Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.

Identifieur interne : 001A41 ( Main/Exploration ); précédent : 001A40; suivant : 001A42

Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.

Auteurs : Guilan Duan [Japon] ; Takehiro Kamiya ; Satoru Ishikawa ; Tomohito Arao ; Toru Fujiwara

Source :

RBID : pubmed:22107880

Descripteurs français

English descriptors

Abstract

Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.

DOI: 10.1093/pcp/pcr161
PubMed: 22107880


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.</title>
<author>
<name sortKey="Duan, Guilan" sort="Duan, Guilan" uniqKey="Duan G" first="Guilan" last="Duan">Guilan Duan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kamiya, Takehiro" sort="Kamiya, Takehiro" uniqKey="Kamiya T" first="Takehiro" last="Kamiya">Takehiro Kamiya</name>
</author>
<author>
<name sortKey="Ishikawa, Satoru" sort="Ishikawa, Satoru" uniqKey="Ishikawa S" first="Satoru" last="Ishikawa">Satoru Ishikawa</name>
</author>
<author>
<name sortKey="Arao, Tomohito" sort="Arao, Tomohito" uniqKey="Arao T" first="Tomohito" last="Arao">Tomohito Arao</name>
</author>
<author>
<name sortKey="Fujiwara, Toru" sort="Fujiwara, Toru" uniqKey="Fujiwara T" first="Toru" last="Fujiwara">Toru Fujiwara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22107880</idno>
<idno type="pmid">22107880</idno>
<idno type="doi">10.1093/pcp/pcr161</idno>
<idno type="wicri:Area/Main/Corpus">001A97</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A97</idno>
<idno type="wicri:Area/Main/Curation">001A97</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A97</idno>
<idno type="wicri:Area/Main/Exploration">001A97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.</title>
<author>
<name sortKey="Duan, Guilan" sort="Duan, Guilan" uniqKey="Duan G" first="Guilan" last="Duan">Guilan Duan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kamiya, Takehiro" sort="Kamiya, Takehiro" uniqKey="Kamiya T" first="Takehiro" last="Kamiya">Takehiro Kamiya</name>
</author>
<author>
<name sortKey="Ishikawa, Satoru" sort="Ishikawa, Satoru" uniqKey="Ishikawa S" first="Satoru" last="Ishikawa">Satoru Ishikawa</name>
</author>
<author>
<name sortKey="Arao, Tomohito" sort="Arao, Tomohito" uniqKey="Arao T" first="Tomohito" last="Arao">Tomohito Arao</name>
</author>
<author>
<name sortKey="Fujiwara, Toru" sort="Fujiwara, Toru" uniqKey="Fujiwara T" first="Toru" last="Fujiwara">Toru Fujiwara</name>
</author>
</analytic>
<series>
<title level="j">Plant & cell physiology</title>
<idno type="eISSN">1471-9053</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic (metabolism)</term>
<term>Arsenites (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Organ Specificity (genetics)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Seedlings (metabolism)</term>
<term>Seeds (genetics)</term>
<term>Seeds (metabolism)</term>
<term>Solutions (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Arsenic (métabolisme)</term>
<term>Arsénites (métabolisme)</term>
<term>Graines (génétique)</term>
<term>Graines (métabolisme)</term>
<term>Oryza (génétique)</term>
<term>Oryza (métabolisme)</term>
<term>Plant (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Solutions (MeSH)</term>
<term>Spécificité d'organe (génétique)</term>
<term>Transport biologique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenic</term>
<term>Arsenites</term>
<term>Membrane Transport Proteins</term>
<term>RNA, Messenger</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Organ Specificity</term>
<term>Oryza</term>
<term>Plant Roots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Graines</term>
<term>Oryza</term>
<term>Racines de plante</term>
<term>Spécificité d'organe</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Oryza</term>
<term>Plant Roots</term>
<term>Saccharomyces cerevisiae</term>
<term>Seedlings</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Arsenic</term>
<term>Arsénites</term>
<term>Graines</term>
<term>Oryza</term>
<term>Plant</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport membranaire</term>
<term>Racines de plante</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plants, Genetically Modified</term>
<term>Solutions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Solutions</term>
<term>Transport biologique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22107880</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-9053</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>53</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant & cell physiology</Title>
<ISOAbbreviation>Plant Cell Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.</ArticleTitle>
<Pagination>
<MedlinePgn>154-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/pcp/pcr161</ELocationID>
<Abstract>
<AbstractText>Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Guilan</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kamiya</LastName>
<ForeName>Takehiro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ishikawa</LastName>
<ForeName>Satoru</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arao</LastName>
<ForeName>Tomohito</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fujiwara</LastName>
<ForeName>Toru</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Plant Cell Physiol</MedlineTA>
<NlmUniqueID>9430925</NlmUniqueID>
<ISSNLinking>0032-0781</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C109281">ACR3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018053">Arsenites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N5509X556J</RegistryNumber>
<NameOfSubstance UI="C015001">arsenite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018053" MajorTopicYN="N">Arsenites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22107880</ArticleId>
<ArticleId IdType="pii">pcr161</ArticleId>
<ArticleId IdType="doi">10.1093/pcp/pcr161</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Arao, Tomohito" sort="Arao, Tomohito" uniqKey="Arao T" first="Tomohito" last="Arao">Tomohito Arao</name>
<name sortKey="Fujiwara, Toru" sort="Fujiwara, Toru" uniqKey="Fujiwara T" first="Toru" last="Fujiwara">Toru Fujiwara</name>
<name sortKey="Ishikawa, Satoru" sort="Ishikawa, Satoru" uniqKey="Ishikawa S" first="Satoru" last="Ishikawa">Satoru Ishikawa</name>
<name sortKey="Kamiya, Takehiro" sort="Kamiya, Takehiro" uniqKey="Kamiya T" first="Takehiro" last="Kamiya">Takehiro Kamiya</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Duan, Guilan" sort="Duan, Guilan" uniqKey="Duan G" first="Guilan" last="Duan">Guilan Duan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22107880
   |texte=   Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22107880" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020